
Modeling Object Oriented Data in a Relational Database

Often in business programming, we find ourselves storing data that lends itself to the concept of inheritance
that we find in object oriented programming. Let’s assume we have an application that works with cats and
dogs. They are both animals and in our model they share many attributes. There are several options for how
to model this data, each with their own advantages and draw backs.

Option 1

In this option we have a separate table for cats and dogs. We also have a view that contains all cats and dogs
by union-ing the two tables together. To improve performance, the view may be materialized.

Option 2

Here our main table is the animal table that contains all the shared attributes. A separate dog and cat table
are maintained with only the attributes that are unique to each type.

Option 3

In this option, we have only one table with an AnimalType column. Dogs and cats are separated into their own
views using that column. Similar to option 1, materializing the views can improve performance.

Comparison

Option Advantages Disadvantages How to add new
animal type

1 Easy to edit a cat or a dog. An application dealing with generic
Animals needs to know which table to
query. May suffer from performance
problems or complexity in dealing with
materialized view refreshes. If you
want to edit and Animal, you need to
figure out which table to edit (you may
create an updatable view to minimize
this downside). Generic animals do
not exist, each must be a cat or a dog.

New views and new
tables

2 One point access for Animal
attributes; There is no
redundancy of columns, each
column is found in only one table.
Animals that are neither dogs nor
cats can be entered in the animal
table.

An application dealing with generic
Animals needs to know which table to
query. Any read of dog or cat is going
to require a join. Any write to a dog or
cat is going to require writing to two
tables and keeping them in sync. This
requires transactions.

Add new tables

3 One point access for all animals
and all their individual attributes.
One query insert and delete.
Query only dogs, only a change to
the where clause is required.
Autonumber works well with this
option, but please use sequences
instead of autonumber anyway!

Confusion about which attributes are
for which animals should be solved
with a prefix. Real databases could
eventually run out of columns if you
have many different types of animals.

New attribute columns
and type columns. For
example if you needed to
add a turtle, and
differentiate mammals
and reptiles, you would
add a reptile type column
and a mammal type
column.

	Modeling Object Oriented Data in a Relational Database
	Option 1
	Option 2
	Option 3
	Comparison

